Lecture 22 : Stopping Times and Martingales

STAT205 Lecturer: Jim Pitman Scribe: Moorea Brega <brega@stat>

These notes are a revision of old notes by Sridhar Machiraju. References: [1], sections
3.1 and 4.2.

22.1 Stopping Times

Stopping times and martingales are both related to the idea of “the information
available at the present time.” This is represented by an increasing family of o-fields
indexed by time — in discrete time, this is just Fy C F; C Fo C ... — called a
filtration, and F,, is thought of as the o-field of “events that are determined by time
n.” A sequence of random variables {X,,} gives a filtration by F,, = o(X1,..., X,).
Conversely we say that a sequence of random variables {Y,,} is adapted to a filtration
Fnif Y, € F, for all n > 1. We say that a sequence of random variables {Z,,} is
predictable (with respect to {F,}) if Z,, € F,—1, for all n > 1.

Let F = {F,} be a filtration. A stopping time T is a random variable T : Q — Z*
such that the event {T" = n} is F,-measurable: V n < oo, {T' =n} € F,,. Two more
equivalent conditions are: {T' < n} € F, and {T > n} € F,.

Not all random variables are stopping times. Consider, for example, the random
variable T defined by

T = first index ¢ < N s.t. X; = max Xj.
1<j<N

Then,

(T=n)= (X1 < Xn,..., Xn1 < X, Xop1 < Xy oo, X < Xon).

Clearly (T" = n) € Fu, but (I' = n) ¢ F, in general. The problem with this
example is that the random variable T" requires us to know “future” information. As
a humorous aside, another example of an adaptive strategy which is not a stopping
time is the following rule for cooking toast: cook toast until 10 seconds before it starts
to smoke.
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Lemma 22.1 (Wald’s Identity) Let X, X;, X5, X3, ... be i.i.d. random variables
with E|X;| < oo and T be a stopping time for {F,} where F, = o(X;, Xs, ..., X},)
with E(T) < co. Let S, = X7 + Xo + ... + X,,. Then ESy = EXET.

Proof:

T 00 00
ESr =E <Z Xn) =E <Z an(Tzn)) =Y E(X,Lgsn)
n=1

Notice

(T<n)eF, n=012,...
<~ (T'>n)eF,
— T'>n+1)eF,
<~ (T'>n)e F, n=123,...

We have 1(r>,) € Fn—1 and X,, independent of F,,_;. Thus,

ESr =Y EX,Elsn_y) =EX E (Z 1(T>n)> — EXET.
n=1 n=1

It might seem as if EX; being the same for all + would suffice for Wald’s identity to
hold. More than this is needed, however. We need E|X;| < oo to hold uniformly,
without which the summation and integral (in the calculation of expected value of
St) cannot be exchanged. The following example illustrates this.

Example 22.2 Define X; as P(X; = £2%) = % Let T = {infn : S, > 1}. Clearly,
P(T =n) =3", ET =2 < co and ESy > 1. However, EX; = 0 which clearly violates
Wald’s identity. Note that here E|X;| = 2" — oo, as i — o0o.

We now derive the classic Gambler’s Ruin formula using Wald’s identity. The problem
is that of a simple, symmetric random walk that starts at Xg = 0, i.e. X; has a
probability of % for both 1 and —1. Let a,b > 0 be two integers. Define T" =
inf{n|S, = bor S, = —a}. Think about a gambler starting with a net profit of 0
and wondering about the chance she wins b before experiencing a net loss of a. Now,
P(Sr = b) = P(T, < T_,) where T, = inf{n|S,, = z}. Similarly, P(Sp = —a) =
P(t_, < Tp). Using Wald’s identity with £X = 0, we have
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E(S7) = bP(Ty < T_,) — aP(T_o < Tp) = 0.

We also have

P(Tb < T_a) + P(T_a < Tb) =1.

Using these two equations, we find

a
P(T, T .) =
(T < ) a+b
b
P(1_,<Ty) = .
( <T) a+b

22.2 Martingales

An {F,}-adapted sequence of random variables {M,} is a martingale (MG) with
respect to F,, if

1. E|M,| < oo, and
We define M, = 0 for convenience and use this definition unless explicitly mentioning
otherwise in the rest of the course. An adapted sequence with finite means is called
a submartingale if M, < E(M,.1|F,), and is called a supermartingale if M, >
E(M,+1|F,). Note that in the case of martingales, the second condition implies

that o(M,) is a filtration, whereas this is not true in the case of submartingales and
supermartingales.

Notes:

1. From the definition of a martingale, we see that E(M,|F,) = M,, for p > n.
2. For a martingale, E(M,,) is constant.
3. For a submartingale, E(M,) is increasing.

4. For a supermartingale, E(M,,) is decreasing.
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An example of a MG is M,, = S, — nEX; where X, is a sequence of i.i.d random
variables, and S, = > | X;, and F,, = 0(Xy,..., X,,):

E(Mn+l|fn) = E(Sn-i-l - (TL + 1)EX1|Fn) = E(Sn - nEX1|Fn) + E(Xn+l|Fn) - IE)(l
= Sn - nEXl + EXn—i—l - EXl = Mn

Also notice that if X,, = M, — M,,_; then E(X,|F,_1) = 0. Similar results can
easily be derived for supermartingales and submartingales. We will be considering
two kinds of results involoving MGs. These are optional stopping theorems, maximal
inequalities, and convergence theorems.

Martingales and predictable sequences can be thought of in a natural way in gambling
systems, and gambling systems give us new martingales. If X, is the outcome of the
n'™ bet in a fair game, and H,, is the multiplier that a gambler places for this bet, then
her earnings on this bet are X,, - H,. Since gamblers can place bets at time n based
upon the outcomes at times 1...n—1, H,, € F,_; i.e., H, must be predictable and S,
is a martingale. Denoting the gambler’s earnings after n bets as a new variable Y,,
and taking Xy, = 0, we define (H - S) by:

which is called the martingale transform.

Lemma 22.3 (Martingale transform) If X,, is a F,,-martingale, and H,, is a pre-
dictable sequence with H,X,, integrable for each n, then (H - X) is a F,-martingale.

Proof: Y, = (H - X),, is an F,-martingale if

E(Yy = Yoa|Fuor) = B(Hn (X5 — Xpo1)[Fnea) = 0.
Using H,, € F,,_1, X,_1 € F_1 and X,, a martingale, we have
E(Y, — Y, 1|F.o1) = HE(X,|Fno1) — H, X,—1 = 0.
|

Martingales in conjunction with stopping times are a neat way of modeling gamblers
strategies. A martingale M,, whose differences represent the outcomes at time n may
be bet upon by a gambler until he stops at some time. This time is intuitively a
stopping time because (by definition of stopping times) (7' = n) is measurable w.r.t
F,. This strategy defines the new process M, 7.

Theorem 22.4 If M,, is an F,—martingale and T is a stopping time, then Mysr is
also an F,—martingale.
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Proof: Using H, = 1(rsn—1) € F,—1 in the MG transform formula the result is
achieved (note that H is bounded). u

Now, if M,, is a martingale and 7' is a stopping time bounded by b, then
E(Myp) = E(Mga) = E(My) (22.2)

In the case of an unbounded stopping time 7', we have that My, — M7 a.s. Hence,
if expectations and limits can be swapped as in

E(Mr) = B ( lim My, ) = lim E(Mrya) = B(M) (22.3)
then we can calculate the left hand side. But, this is not always possible. For instance,
in the case of a random symmetric walk starting at Sy = 1 and 7" = inf{n|.S,, = 0}, we
have ESt = 0 because P(T < oo) = 1. However, 1 = ESy = ESrp, (1). As we will
see later, uniform integrability is enough to justify the swapping of the expectations
and limits.
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